Distributed Programming
with Ice

Michi Henning
Mark Spruiell

With contributions by

Dwayne Boone, Brent Eagles, Benoit Foucher,
Marc Laukien, Matthew Newhook, Bernard Normier



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and ZeroC was aware of the trademark claim,
the designations have been printed in initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

This documentation is licensed under the Creative Commons Attribution-NoDerivs 2.5 License. You

can find a copy of this license in Appendix J. The Ice software is licensed under different terms. See the
Ice distribution for details on that license.

Copyright © 2003-2009 by ZeroC, Inc.
mailto:info@zeroc.com
http://www.zeroc.com

Revision 3.3.1b, July 2009

This revision of the documentation describes Ice version 3.3.1, including Ice Touch 1.0.

The Ice source distribution makes use of a number of third-party products:

* Berkeley DB, developed by Oracle (http://www.oracle.com)

* bzip2/libbzip2, developed by Julian R. Seward (http://sources.redhat.com/bzip2)

» The OpenSSL Toolkit, developed by the OpenSSL Project (http://www.openssl.org)

» SSLeay, developed by Eric Young (mailto:eay @cryptsoft.com)

* Expat, developed by James Clark (http://www.libexpat.org)

* STLport, developed by the STLport Standard Library Project (http://www.stlport.org)
* mcpp, developed by Kiyoshi Matsui (http://mcpp.sourceforge.net)

See the Ice source distribution for the license agreements for each of these products.


mailto:info@zeroc.com
http://www.oracle.com
http://sources.redhat.com/bzip2
http://www.openssl.org
mailto:eay@cryptsoft.com
http://www.libexpat.org
http://www.zeroc.com
http://www.stlport.org
http://mcpp.sourceforge.net

Contents

Chapter 1 Introduction 1
1.1  Introduction 1
1.2 The Internet Communications Engine (Ice) 4
1.3 Organization of this Book 4
1.4  Typographical Conventions 6
1.5  Source Code Examples 6
1.6  Contacting the Authors 6
1.7 Ice Support 7
Part I Ice Overview 9
Chapter 2 Ice Overview 11
2.1 Chapter Overview 11
2.2 The Ice Architecture 11
2.3 Ice Services 27
2.4  Architectural Benefits of Ice 30
2.5 A Comparison with CORBA 32
Chapter 3 A Hello World Application 37
3.1  Chapter Overview 37
3.2 Writing a Slice Definition 38
3.3 Writing an Ice Application with C++ 38
3.4  Writing an Ice Application with Java 47
3.5  Writing an Ice Application with C# 54
3.6 Writing an Ice Application with Visual Basic 61
3.7  Writing an Ice Application with Objective-C 69
3.8 Writing an Ice Application with Python 78
3.9  Writing an Ice Application with Ruby 83
3.10 Summary 86



Part II Slice 89
Chapter 4 The Slice Language 91
4.1  Chapter Overview 91
4.2 Introduction 91
4.3  Compilation 92
4.4 Source Files 95
4.5  Lexical Rules 97
4.6  Modules 100
47 The Ice Module 101
4.8  Basic Slice Types 102
4.9  User-Defined Types 104
4.10 Interfaces, Operations, and Exceptions 111
4.11 Classes 136
4.12  Forward Declarations 152
4.13 Type IDs 153
4.14  Operations on Object 154
4.15 Local Types 156
4.16 Names and Scoping 157
4.17 Metadata 164
4.18 Serializable Objects 165
4.19 Deprecating Slice Definitions 166
4.20 Using the Slice Compilers 167
4.21 Slice Checksums 169
4.22 A Comparison of Slice and CORBA IDL 170
4.23  Generating Slice Documentation 179
4.24  Summary 185
Chapter 5 Slice for a Simple File System 187
5.1  Chapter Overview 187
5.2 The File System Application 187
5.3  Slice Definitions for the File System 188
5.4  The Complete Definition 190



Part III Language Mappings 193
Part III.A C++ Mapping 195
Chapter 6 Client-Side Slice-to-C++ Mapping 197
6.1  Chapter Overview 197
6.2  Introduction 197
6.3  Mapping for Identifiers 198
6.4  Mapping for Modules 199
6.5  The Ice Namespace 200
6.6  Mapping for Simple Built-In Types 200
6.7  Mapping for User-Defined Types 202
6.8  Mapping for Constants 211
6.9  Mapping for Exceptions 212
6.10 Mapping for Run-Time Exceptions 216
6.11 Mapping for Interfaces 217
6.12  Mapping for Operations 227
6.13  Exception Handling 233
6.14 Mapping for Classes 235
6.15 slice2cpp Command-Line Options 259
6.16  Using Slice Checksums 266
6.17 A Comparison with the CORBA C++ Mapping 266
Chapter 7 Developing a File System Client in C++ 269
7.1  Chapter Overview 269
7.2 The C++ Client 269
7.3  Summary 274
Chapter 8 Server-Side Slice-to-C++ Mapping 275
8.1  Chapter Overview 275
8.2  Introduction 275
8.3 The Server-Side main Function 276
8.4  Mapping for Interfaces 291
8.5  Parameter Passing 294
8.6  Raising Exceptions 295
8.7  Object Incarnation 296
8.8  Summary 302
Chapter 9 Developing a File System Server in C++ 303
9.1  Chapter Overview 303
9.2  Implementing a File System Server 303

9.3  Summary 320



Vi

Part II11.B Java Mapping 323
Chapter 10  Client-Side Slice-to-Java Mapping 325
10.1 Chapter Overview 325
10.2  Introduction 325
10.3 Mapping for Identifiers 326
10.4 Mapping for Modules 327
10.5 The Ice Package 328
10.6  Mapping for Simple Built-in Types 328
10.7 Mapping for User-Defined Types 328
10.8 Mapping for Constants 333
10.9 Mapping for Exceptions 334
10.10 Mapping for Run-Time Exceptions 336
10.11 Mapping for Interfaces 337
10.12 Mapping for Operations 346
10.13 Exception Handling 352
10.14 Mapping for Classes 354
10.15 Serializable Objects 363
10.16 Customizing the Java Mapping 364
10.17 slice2java Command-Line Options 378
10.18 Using Slice Checksums 379
Chapter 11 Developing a File System Client in Java 381
11.1  Chapter Overview 381
11.2  The Java Client 381
11.3  Summary 385
Chapter 12  Server-Side Slice-to-Java Mapping 387
12.1  Chapter Overview 387
12.2  Introduction 387
12.3  The Server-Side main Function 388
12.4  Mapping for Interfaces 395
12.5 Parameter Passing 398
12.6  Raising Exceptions 399
12.7 Tie Classes 400
12.8  Object Incarnation 403
12.9  Summary 407
Chapter 13  Developing a File System Server in Java 409
13.1 Chapter Overview 409
13.2 Implementing a File System Server 409
13.3  Summary 418



Vii

Part I11.C C# Mapping 419
Chapter 14  Client-Side Slice-to-C# Mapping 421
14.1 Chapter Overview 421
14.2  Introduction 421
14.3 Mapping for Identifiers 422
14.4 Mapping for Modules 423
14.5 The Ice Namespace 424
14.6  Mapping for Simple Built-in Types 424
14.7 Mapping for User-Defined Types 425
14.8 Mapping for Constants 442
14.9 Mapping for Exceptions 443
14.10 Mapping for Interfaces 446
14.11 Mapping for Operations 454
14.12 Exception Handling 458
14.13 Mapping for Classes 460
14.14 Serializable Objects 471
14.15 C#-Specific Metadata Directives 472
14.16 slice2cs Command-Line Options 472
14.17 Using Slice Checksums 473
Chapter 15 Developing a File System Client in C# 475
15.1 Chapter Overview 475
15.2 The C# Client 475
15.3 Summary 479
Chapter 16  Server-Side Slice-to-C# Mapping 481
16.1 Chapter Overview 481
16.2 Introduction 481
16.3 The Server-Side Main Method 482
16.4 Mapping for Interfaces 488
16.5 Parameter Passing 491
16.6 Raising Exceptions 492
16.7 Tie Classes 494
16.8  Object Incarnation 497
16.9 Summary 501
Chapter 17 Developing a File System Server in C# 503
17.1  Chapter Overview 503
17.2  Implementing a File System Server 503
17.3  Summary 512



viii

Part II1.D Objective-C Mapping 513
Chapter 18 Client-Side Slice-to-Objective-C Mapping 515
18.1 Chapter Overview 515
18.2  Introduction 515
18.3 Mapping for Modules 516
18.4 The ICE Prefix 518
18.5 Mapping for Identifiers 518
18.6 Internal Identifiers 519
18.7 Mapping for Built-In Types 520
18.8 Mapping for User-Defined Types 521
18.9 Mapping for Constants 529
18.10 Mapping for Exceptions 530
18.11 Mapping for Interfaces 537
18.12 Mapping for Operations 543
18.13 Exception Handling 551
18.14 Mapping for Local Interfaces 553
18.15 Mapping for Classes 554
18.16 Interfaces by Value 565
18.17 slice2objc Command-Line Options 566
Chapter 19 Developing a File System Client in Objective-C 567
19.1 Chapter Overview 567
19.2  The Objective-C Client 567
19.3 Summary 572
Chapter 20  Server-Side Slice-to-Objective-C Mapping 573
20.1 Chapter Overview 573
20.2 Introduction 573
20.3 The Server-Side main Function 574
20.4 Mapping for Interfaces 577
20.5 Parameter Passing 581
20.6  Raising Exceptions 583
20.7  Object Incarnation 584
20.8  Summary 588
Chapter 21  Developing a File System Server in Objective-C 589
21.1  Chapter Overview 589
21.2 Implementing a File System Server 589
21.3 Summary 601



Part II1.E Python Mapping 603
Chapter 22  Client-Side Slice-to-Python Mapping 605
22.1 Chapter Overview 605
22.2  Introduction 605
22.3  Mapping for Identifiers 606
22.4  Mapping for Modules 607
22.5 The Ice Module 607
22.6  Mapping for Simple Built-In Types 607
22.7 Mapping for User-Defined Types 609
22.8 Mapping for Constants 614
22.9 Mapping for Exceptions 615
22.10 Mapping for Run-Time Exceptions 617
22.11 Mapping for Interfaces 618
22.12 Mapping for Operations 624
22.13 Exception Handling 629
22.14 Mapping for Classes 630
22.15 Code Generation 637
22.16 Using Slice Checksums 647
Chapter 23  Developing a File System Client in Python 649
23.1 Chapter Overview 649
23.2  The Python Client 649
23.3 Summary 653
Chapter 24  Server-Side Slice-to-Python Mapping 655
24.1 Chapter Overview 655
24.2  Introduction 655
243 The Server-Side main Program 656
24.4  Mapping for Interfaces 662
24.5 Parameter Passing 664
24.6 Raising Exceptions 666
247  Object Incarnation 667
24.8 Summary 671
Chapter 25 Developing a File System Server in Python 673
25.1 Chapter Overview 673
25.2 Implementing a File System Server 673
25.3 Thread Safety 680

25.4  Summary 681



Part III.F Ruby Mapping

683

Chapter 26  Client-Side Slice-to-Ruby Mapping 685
26.1 Chapter Overview 685
26.2 Introduction 685
26.3 Mapping for Identifiers 686
26.4 Mapping for Modules 687
26.5 The Ice Module 687
26.6 Mapping for Simple Built-In Types 687
26.7 Mapping for User-Defined Types 688
26.8 Mapping for Constants 693
26.9 Mapping for Exceptions 694
26.10 Mapping for Run-Time Exceptions 696
26.11 Mapping for Interfaces 696
26.12 Mapping for Operations 703
26.13 Exception Handling 707
26.14 Mapping for Classes 709
26.15 Code Generation 717
26.16 The main Program 723
26.17 Using Slice Checksums 729
Chapter 27 Developing a File System Client in Ruby 731
27.1 Chapter Overview 731
27.2 The Ruby Client 731
27.3  Summary 735
Part I11.G PHP Mapping 737
Chapter 28 Ice Extension for PHP 739
28.1 Chapter Overview 739
28.2  Introduction 739
28.3 Configuration 741
28.4  Client-Side Slice-to-PHP Mapping 745
Chapter 29 Developing a File System Client in PHP 763
29.1 Chapter Overview 763
29.2  The PHP Client 763
29.3 Summary 767



Xi

Part IV Advanced Ice 769
Chapter 30  Ice Properties and Configuration 771
30.1 Chapter Overview 771
30.2 Properties 771
30.3 Configuration Files 773
30.4 Setting Properties on the Command Line 775
30.5 The Ice.Config Property 776
30.6 Command-Line Parsing and Initialization 777
30.7 The Ice.ProgramName property 779
30.8 Using Properties Programmatically 780
30.9 Unused Properties 790
30.10 Summary 790
Chapter 31 Threads and Concurrency with C++ 791
31.1 Chapter Overview 791
31.2 Introduction 791
31.3 Library Overview 792
31.4 Mutexes 792
31.5 Recursive Mutexes 800
31.6 Read-Write Recursive Mutexes 802
31.7 Timed Locks 806
31.8 Monitors 811
31.9 Condition Variables 820
31.10 Efficiency Considerations 824
31.11 Threads 824
31.12 Portable Signal Handling 834

31.13 Summary 835



Xii

Chapter 32 The Ice Run Time in Detail

Chapter 33

32.1
322
323
324
325
32.6
32.7
32.8
329
32.10
32.11
32.12
32.13
32.14
32.15
32.16
32.17
32.18
32.19
32.20
32.21
3222
32.23
32.24
32.25
32.26
32.27
32.28

Introduction

Communicators
Communicator Initialization
Object Adapters

Object Identity

The Ice: :Current Object
Servant Locators

Default Servants

Server Implementation Techniques
The Ice Threading Model
Proxies

The Ice: :Context Parameter
Connection Timeouts

Oneway Invocations

Datagram Invocations

Batched Invocations

Testing Proxies for Dispatch Type
Location Services
Administrative Facility

The Ice: :Logger Interface
The Ice: :Stats Interface
Location Transparency
Automatic Retries

Dispatch Interceptors

String Conversion

Developing a Plug-In

A Comparison of the Ice and CORBA Run Time

Summary

Asynchronous Programming

33.1
33.2
333
334
335

Chapter Overview
Introduction
Using AMI

Using AMD
Summary

837
837
838
843
844
859
862
864
879
885
920
933
945
954
956
961
963
966
966
975
984
992
994
996
1002
1007
1014
1019
1021

1023
1023
1023
1026
1050
1062



xiii

Chapter 34

Chapter 35

Chapter 36

Chapter 37

Facets and Versioning

34.1
34.2
34.3
344
34.5
34.6
34.7
34.8

Introduction

Concept and APIs

The Versioning Problem
Versioning with Facets
Facet Selection
Behavioral Versioning
Design Considerations
Summary

Object Life Cycle

35.1
35.2
353
354
355
35.6
35.7
35.8
35.9
35.10
35.11
35.12

Chapter Overview

Introduction

Object Existence and Non-Existence

Life Cycle of Proxies, Servants, and Ice Objects
Object Creation

Object Destruction

Removing Cyclic Dependencies

Life Cycle and Parallelism

Object Identity and Uniqueness

Object Life Cycle for the File System Application
Avoiding Server-Side Garbage

Summary

Dynamic Ice

36.1
36.2
36.3
36.4
36.5

Chapter Overview

Streaming Interface

Dynamic Invocation and Dispatch

Asynchronous Dynamic Invocation and Dispatch
Summary

Connection Management

37.1
37.2
37.3
374
37.5
37.6
37.7
37.8

Chapter Overview

Introduction

Connection Establishment
Active Connection Management
Obtaining a Connection
Connection Closure
Bidirectional Connections
Summary

1063
1063
1063
1070
1076
1076
1078
1080
1082

1083
1083
1084
1085
1090
1092
1096
1113
1120
1122
1125
1144
1153

1155
1155
1155
1189
1206
1213

1215
1215
1215
1216
1221
1222
1226
1227
1231



Xiv

Chapter 38 The Ice Protocol 1233
38.1 Chapter Overview 1233
38.2 Data Encoding 1234
38.3 Protocol Messages 1258
38.4 Compression 1268
38.5 Protocol and Encoding Versions 1270
38.6 A Comparison with IIOP 1274

Part V Ice Services 1281

Chapter 39 IceGrid 1283
39.1 Chapter Overview 1283
39.2 Introduction 1284
39.3 IceGrid Architecture 1286
39.4  Getting Started 1290
39.5 Using Deployment 1295
39.6 Well-known Objects 1304
39.7 Templates 1313
39.8 IceBox Integration 1319
39.9 Object Adapter Replication 1322
39.10 Load Balancing 1325
39.11 Sessions 1328
39.12 Registry Replication 1336
39.13 Application Distribution 1341
39.14 Administrative Sessions 1349
39.15 Glacier?2 Integration 1356
39.16 XML Reference 1360
39.17 Variable and Parameter Semantics 1390
39.18 Property Set Semantics 1396
39.19 XML Features 1401
39.20 Server Reference 1404
39.21 Administrative Facility Integration 1413
39.22 Securing IceGrid 1421
39.23 Administrative Utilities 1426
39.24 Server Activation 1434
39.25 Solving Problems 1437
39.26 Summary 1440



XV

Chapter 40  Freeze 1443
40.1 Chapter Overview 1443
40.2 Introduction 1444
40.3 The Freeze Map 1444
40.4 Using a Freeze Map in the File System Server 1471
40.5 Freeze Evictors 1497
40.6  Using the Freeze Evictor in a File System Server 1513
40.7 The Freeze Catalog 1535
40.8 Backups 1536
40.9 Summary 1537
Chapter 41 FreezeScript 1539
41.1 Chapter Overview 1539
41.2 Introduction 1539
41.3 Database Migration 1540
41.4 Transformation Descriptors 1546
41.5 Using transformdb 1560
41.6 Database Inspection 1568
41.7 Using dumpdb 1579
41.8 Descriptor Expression Language 1583
41.9 Summary 1586
Chapter 42 IceSSL 1589
42.1 Chapter Overview 1589
42.2 Introduction 1589
42.3  Using IceSSL 1592
42.4  Configuring IceSSL 1595
42.5 Programming with IceSSL 1609
42.6  Advanced Topics 1624
427 Setting up a Certificate Authority 1632

42.8 Summary 1637



XVi

Chapter 43

Chapter 44

Chapter 45

Glacier2

43.1
43.2
43.3
43.4
43.5
43.6
43.7
43.8
43.9
43.10
43.11
43.12
43.13

Chapter Overview
Introduction

Using Glacier2
Callbacks

Router Security
Session Management
Dynamic Filtering
Request Buffering
Request Contexts
Firewalls

Advanced Client Configurations
IceGrid Integration
Summary

IceBox

44.1
44.2
44.3
44.4
445
44.6

Chapter Overview
Introduction
Developing a Service
Starting IceBox
IceBox Administration
Summary

IceStorm

45.1
45.2
453
454
45.5
45.6
45.7
45.8
45.9
45.10
45.11
45.12
45.13

Chapter Overview
Introduction

Concepts

IceStorm Interface Overview
Using IceStorm

Publishing to a Specific Subscriber
Highly Available IceStorm
IceStorm Administration
Topic Federation

Quality of Service

Delivery Mode

Configuring IceStorm
Summary

1639
1639
1639
1644
1651
1654
1663
1667
1670
1670
1673
1674
1675
1677

1679
1679
1679
1680
1688
1690
1695

1697
1697
1697
1699
1702
1704
1715
1717
1721
1724
1728
1730
1732
1736



XVii

Chapter 46  IcePatch2 1737
46.1 Chapter Overview 1737

46.2 Introduction 1737

46.3 Using icepatch2calc 1738

46.4 Running the Server 1741

46.5 Running the Client 1742

46.6  Object Identities 1745

46.7 The IcePatch2 Client Utility Library 1745

46.8 Summary 1750
Appendixes 1751
Appendix A  Slice Keywords 1753
Appendix B  Slice API Reference 1755
Appendix C Properties 1757
C.1  Ice Configuration Property 1757

C.2  Ice Trace Properties 1758

C.3  Ice Warning Properties 1761

C4  Ice Object Adapter Properties 1763

C.5 Ice Administrative Properties 1768

C.6  Ice Plug-In Properties 1770

C.7  Ice Thread Pool Properties 1773

C.8  Ice Default and Override Properties 1775

C.9 Ice Proxy Properties 1780

C.10 Ice Transport Properties 1782

C.11 Ice Miscellaneous Properties 1785

C.12  IceSSL Properties 1793

C.13 IceBox Properties 1810

C.14 IceBoxAdmin Properties 1813

C.15 IceGrid Properties 1813

C.16 IceGrid Administrative Client Properties 1832

C.17 IceStorm Properties 1833

C.18 Glacier2 Properties 1842

C.19 Freeze Properties 1855

C.20 IcePatch2 Properties 1864

Appendix D Proxies and Endpoints 1867
D.1  Proxies 1867

D.2  Endpoints 1869



xviii

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

The C++ Utility Library

E.1  Introduction

E.2 AbstractMutex

E.3 Cache

E4 CtrlCHandler

E.5 Exception

E.6 generateUUID

E.7 Handle Template

E.8 Handle Template Adaptors
E9 Sharedand SimpleShared
E.10 Threads and Synchronization Primitives
E.11 Time

E.12 Timer and TimerTask

E.13 Unicode and UTF-8 Conversion Functions
E.14 Version Information

The Java Utility Library

F.1 Introduction

F2  The IceUtil Package

F3 The Ice.Util Class

The .NET Utility Library

G.1 Introduction

G.2  Communicator Initialization Methods
G.3  Identity Conversion

G.4  Property Creation Methods

G.5 Proxy Comparison Methods
G.6  Stream Creation

G.7 UUID Generation

G.8  Version Information

Windows Services

H.1 Introduction

H.2  Installing a Windows Service
H.3  The Ice Service Installer

H.4  Manual Installation

H.5  Troubleshooting

Binary Distributions

I.1 Introduction

1.2 Developer Kits

1.3 Guidelines

1879
1879
1879
1882
1885
1886
1886
1887
1890
1895
1896
1896
1896
1899
1900

1901
1901
1901
1904

1907
1907
1907
1907
1908
1908
1908
1908
1908

1911
1911
1912
1912
1918
1926

1929
1929
1929
1930



Xix

Appendix J License Information

Bibliography

J.1
J.2
13
J4
1.5
J.6
1.7
1.8

Definitions

Fair Use Rights

License Grant

Restrictions

Representations, Warranties and Disclaimer
Limitation on Liability

Termination

Miscellaneous

1935
1935
1936
1936
1937
1938
1939
1939
1940

1941






Chapter 1
Introduction

1.1

Introduction

Since the mid-nineties, the computing industry has been using object-oriented
middleware platforms, such as DCOM [3] and CORBA [4]. Object-oriented
middleware was an important step forward toward making distributed computing
available to application developers. For the first time, it was possible to build
distributed applications without having to be a networking guru: the middleware
platform took care of the majority of networking chores, such as marshaling and
unmarshaling (encoding and decoding data for transmission), mapping logical
object addresses to physical transport endpoints, changing the representation of
data according to the native machine architecture of client and server, and auto-
matically starting servers on demand.

Yet, neither DCOM nor CORBA succeeded in capturing a majority of the
distributed computing market, for a number of reasons:

* DCOM was a Microsoft-only solution that could not be used in heterogeneous
networks containing machines running a variety of operating systems.

* DCOM was impossible to scale to large numbers (hundreds of thousands or
millions) of objects, largely due to the overhead of its distributed garbage
collection mechanism.

* Although CORBA was available from a variety of vendors, it was rarely
possible to find a single vendor that could provide an implementation for all of

1



Introduction

the environments in a heterogeneous network. Despite much standardization
effort, lack of interoperability between different CORBA implementations
continued to cause problems, and source code compatibility for languages
such as C or C++ was never fully achieved, usually due to vendor-specific
extensions and CORBA'’s lack of a specification for multi-threaded environ-
ments.

* Both DCOM and CORBA suffered from excessive complexity. Becoming
proficient and designing for and programming with either platform was a
formidable task that took many months (or, to reach expert level, many years)
to master.

® Performance issues have plagued both platforms through their respective
histories. For DCOM, only one implementation was available, so shopping
around for a better-performing implementation was not an option. While
CORBA was available from a number of vendors, it was difficult (if not
impossible) to find standards-compliant implementations that performed well,
mainly due to the complexity imposed by the CORBA specification itself
(which, in many cases, was feature-rich beyond need).

* In heterogeneous environments, the coexistence of DCOM and CORBA was
never an easy one either: while some vendors offered interoperability prod-
ucts, interoperability between the two platforms was never seamless and diffi-
cult to administer, resulting in disconnected islands of different technologies.

DCOM was superseded by the Microsoft .NET platform [11] in 2002. While
.NET offers more powerful distributed computing support than DCOM, it is still a
Microsoft-only solution and therefore not an option for heterogeneous environ-
ments. On the other hand, CORBA has been stagnating in recent history and a
number of vendors have left the market, leaving the customer with a platform that
is no longer widely supported; the interest of the few remaining vendors in further
standardization has waned, with the result that many defects in the CORBA speci-
fications are not addressed, or addressed only years after they are first reported.
Simultaneously with the decline of DCOM and CORBA, a lot of interest arose
in the distributed computing community around SOAP [26] and web
services [27]. The idea of using the ubiquitous World Wide Web infrastructure and
HTTP to develop a middleware platform was intriguing—at least in theory, SOAP
and web services had the promise of becoming the lingua franca of distributed
computing on the Internet. Despite much publicity and many published papers,
web services have failed to deliver on that promise: as of this writing, very few
commercial systems that use the web services architecture have been developed.
There are a number of reasons for this:



* SOAP imposes very serious performance penalties on applications, both in
terms of network bandwidth and CPU overhead, to the extent that the tech-
nology is unsuitable for many performance-critical systems.

* While SOAP provides an “on-the-wire” specification, this is insufficient for
the development of realistic applications because the abstraction levels
provided by the specifications are too low. While an application can cobble
SOAP messages together, doing so is tedious and error-prone in the extreme.

* The lack of higher-level abstractions prompted a number of vendors to
provide application development platforms that automate the development of
SOAP-compliant applications. However, these development platforms,
lacking any standardization beyond the protocol level, are by necessity propri-
etary, so applications developed with tools from one vendor cannot be used
with middleware products from other vendors.

® There are serious concerns [15] about the architectural soundness of SOAP
and web services. In particular, many experts have expressed concerns about
the inherent lack of security of the platform.

* Web services is a technology in its infancy. Little standardization has taken
place so far [27], and it appears that it will be years before standardization
reaches the level of completeness that is necessary for source code compati-
bility and cross-vendor interoperability.

As a result, developers who are looking for a middleware platform are faced with
a number of equally unpleasant options:

® Choose .NET/WCF

The most serious drawback is that it supports only a limited number of
languages and platforms.

® Choose Java RMI
This is a Java-only solution and so does not qualify as middleware.
® Choose CORBA

The most serious drawbacks are the high degree of complexity of an aging
platform, coupled with ongoing vendor attrition.

* Choose Web Services

The most serious drawbacks are the severe inefficiencies and the need to use
proprietary development platforms, as well as security issues.

These options look very much like a no-win scenario: you can choose a platform
that will run only with limited languages or platforms, you can choose a platform



Introduction

1.2

that is complex and suffering from gradual abandonment, or you can choose a
platform that is inefficient and, due to the lack of standardization, proprietary.

The Internet Communications Engine (Ice)

1.3

It is against this unpleasant background of choices that ZeroC, Inc. decided to
develop the Internet Communications Engine, or Ice for short.! The main design
goals of Ice are:

* Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

Provide a full set of features that support development of realistic distributed
applications for a wide variety of domains.

* Avoid unnecessary complexity, making the platform easy to learn and to use.

* Provide an implementation that is efficient in network bandwidth, memory
use, and CPU overhead.

* Provide an implementation that has built-in security, making it suitable for use
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a
middleware platform that is more powerful than CORBA, without making all of
CORBA’s mistakes.”

Organization of this Book

This book is divided into four parts and a number of appendixes:

* “Part I: Ice Overview” provides an overview of the features offered by Ice and
explains the Ice object model. After reading this part, you will understand the
major features and architecture of the Ice platform, its object model and
request dispatch model, and know the basic steps required to build a simple
application in C++, Java, C#, Visual Basic, Objective-C, Python, and Ruby.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.



1.3 Organization of this Book

NOTE:

® “Part II: Slice” explains the Slice definition language. After reading this part,

you will have detailed knowledge of how to specify interfaces and types for a
distributed application.

“Part III: Language Mappings” contains a sub-part for each of the language
mappings. After reading the relevant sub-part, you will know how to imple-
ment an application in your language of choice.

“Part IV: Advanced Ice” presents many Ice features in detail and covers
advanced aspects of server development, such as properties, threading, object
life cycle, object location, persistence, and asynchronous as well as dynamic
method invocation and dispatch. After reading this part, you will understand
the advanced features of Ice and how to effectively use them to find the
correct trade-off between performance and resource consumption as appro-
priate for your application requirements.

“Part V: Ice Services” covers the services provided with Ice, such as IceGrid
(a sophisticated deployment tool), Glacier2 (the Ice firewall solution),
IceStorm (the Ice messaging service), and IcePatch2 (a software patching
service).2

The Appendixes contain Ice reference material and explain the feature differ-
ences between Ice and Ice-E (the version of Ice for embedded systems).

This entire manual is also available online as a set of HTML pages at
http://www.zeroc.com/doc/Ice-3.3.1/manual.

You can always find the latest version of the manual at
http://www.zeroc.com/Ice-Manual.html.

In addition, you can find an online reference of all the Slice APIs that are used by
Ice and its services at http://www.zeroc.com/doc/Ice-3.3.1/reference.

You can always find the latest version of this reference at
http://www.zeroc.com/Slice-Reference.html.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that

software developers are still inveterate punsters.


http://www.zeroc.com/doc/Ice-3.3.1/manual
http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/doc/Ice-3.3.1/reference
http://www.zeroc.com/Slice-Reference.html
http://www.zeroc.com/Slice-Reference.html

Introduction

1.4

Typographical Conventions

1.5

This book uses the following typographical conventions:
¢ Slice source code appears in Lucida Sans Typewriter.
* Programming-language source code appears in Courier.
* File names appear in Courier.
* Commands appear in Courier Bold.

Occasionally, we present copy of an interactive session at a terminal. In such
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash).
Output presented by the system is shown in Courier, and input is presented in
Courier Bold, for example:

S echo hello
hello

Slice and the various programming languages often use the same identifiers.
When we talk about an identifier in its generic, language-independent sense, we
use Lucida Sans Typewriter. When we talk about an identifier in its language-
specific (for example, C++ or Java) sense, we use Courier.

Source Code Examples

1.6

Throughout the book, we use a case study to illustrate various aspects of Ice. The
case study implements a simple distributed hierarchical file system, which we
progressively improve to take advantage of more sophisticated features as the
book progresses. The source code for the case study in its various stages is
provided with the distribution of this book. We encourage you to experiment with
these code examples (as well as the many demonstration programs that ship with
Ice).

Contacting the Authors

We would very much like to hear from you in case you find any bugs (however
minor) in this book. We also would like to hear your opinion on the contents, and
any suggestions as to how it might be improved. You can contact us via e-mail at
mailto:icebook @zeroc.com.


mailto:icebook@zeroc.com

1.7 Ice Support

1.7 Ice Support

If you have a question and you cannot find an answer in this manual, you can visit
our developer forums at http://www.zeroc.com/forums to see if another developer
has encountered the same issue. If you still need help, feel free to post your ques-
tion on the forum, which ZeroC's developers monitor regularly. Note, however,
that we can provide only limited free support in our forums. For guaranteed
response and problem resolution times, we highly recommend purchasing
commercial support.


http://www.zeroc.com/forums
http://www.zeroc.com/forums




Part 1

Ice Overview







Chapter 2
Ice Overview

2.1

Chapter Overview

2.2

In this chapter, we present a high-level overview of the Ice architecture.

Section 2.2 introduces fundamental concepts and terminology, and outlines how
Slice definitions, language mappings, and the Ice run time and protocol work in
concert to create clients and servers. Section 2.3 briefly presents the object
services provided by Ice, and Section 2.4 outlines the benefits that result from the
Ice architecture. Finally, Section 2.5 presents a brief comparison of the Ice and
CORBA architectures.

The Ice Architecture

2.2.1

Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice
provides tools, APIs, and library support for building object-oriented client—server
applications. Ice applications are suitable for use in heterogeneous environments:
client and server can be written in different programming languages, can run on
different operating systems and machine architectures, and can communicate

11



12

Ice Overview

2.2.2

using a variety of networking technologies. The source code for these applications
is portable regardless of the deployment environment.

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no
exception. However, the amount of new jargon used by Ice is minimal. Rather
than inventing new terms, we have used existing terminology as much as possible.
If you have used another middleware technology, such as CORBA, in the past,
you will be familiar with most of what follows. (However, we suggest you at least
skim the material because a few terms used by Ice do differ from the corre-
sponding CORBA terminology.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for
the duration of a request:

* Clients are active entities. They issue requests for service to servers.

* Servers are passive entities. They provide services in response to client
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue
requests and only respond to requests. Instead, servers often act as a server on
behalf of some client but, in turn, act as a client to another server in order to
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only
request service from an object. Instead, clients are frequently client—server
hybrids. For example, a client might start a long-running operation on a server; as
part of starting the operation, the client can provide a callback object to the server
that is used by the server to notify the client when the operation is complete. In
that case, the client acts as a client when it starts the operation, and as a server
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client—server
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:



2.2 The Ice Architecture 13

An Ice object is an entity in the local or a remote address space that can
respond to client requests.

A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still
a single Ice object.

Each Ice object has one or more inferfaces. An interface is a collection of
named operations that are supported by an object. Clients issue requests by
invoking operations.

An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server;
out-parameters are initialized by the server and passed to the client. (The
return value is simply a special out-parameter.)

An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object
model assumes that object identities are globally unique, that is, no two
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as
UUIDs [14], only identities that do not clash with any other identity within
your domain of interest. However, there are architectural advantages to using
globally unique identifiers, which we explore in Chapter 35.

Proxies

Fo

r a client to be able to contact an Ice object, the client must hold a proxy for the

Ice object.1 A proxy is an artifact that is local to the client’s address space; it
represents the (possibly remote) Ice object for the client. A proxy acts as the local

1.

A proxy is the equivalent of a CORBA object reference. We use “proxy” instead of “reference”
to avoid confusion: “reference” already has too many other meanings in various programming
languages.



Ice Overview

ambassador for an Ice object: when the client invokes an operation on the proxy,
the Ice run time:

1. Locates the Ice object

. Activates the Ice object’s server if it is not running
. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

AN B~ W N

. Returns any out-parameters and the return value to the client (or throws an
exception in case of an error)
A proxy encapsulates all the necessary information for this sequence of steps to
take place. In particular, a proxy contains:
* Addressing information that allows the client-side run time to contact the
correct server
* An object identity that identifies which particular object in the server is the
target of a request
* An optional facet identifier that determines which particular facet of an object
the proxy refers to
Section 32.11 provides more information about proxies.

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls
that allow you to convert a proxy to its stringified form and vice versa. This is
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing
information, it can create a proxy “out of thin air” by supplying that information.
In other words, no part of the information inside a proxy is considered opaque; a
client needs to know only an object’s identity, addressing information, and (to be
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the
address at which its server runs. The address is completely specified by:

* a protocol identifier (such TCP/IP or UDP)



2.2 The Ice Architecture 15

® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the
addressing information in the proxy to contact the server; the identity of the object
is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it
may specify an identity together with an object adapter identifier. An object that is
accessible using only its identity is called a well-known object. For example, the
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified
form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a
location service (see Section 32.18). In turn, the location service uses the object
identity or the object adapter identifier as the key in a lookup table that contains
the address of the server and returns the current server address to the client. The
client-side run time now knows how to contact the server and dispatches the client
request as usual.

The entire process is similar to the mapping from Internet domain names to IP
address by the Domain Name S