
1 1

1 1

2 2

2 2

3 3

3 3

1

Contents

Introduction 3

1 Setting up a converter 5

1.1 from structure to setup 5

1.2 alternative solutions 7

2 Filtering content 11

2.1 TEX versus Lua 11

2.2 a few details 12

3 Commands 15

3.1 nodes and lpaths 15

3.2 loading 15

3.3 ushing data 16

3.4 information 17

3.5 manipulation 18

3.6 integration 18

3.7 setups 19

3.8 testing 20

3.9 initialization 21

3.10 helpers 22

3.11 synonyms 22

4 Expressions and lters 23

4.1 path expressions 23

4.2 functions as lters 25

4.3 example 26

4.4 tables 28

5 Tracing 31

6 Expansion 33

7 Example paths 37

4 4

4 4

Contents

2

5 5

5 5

3

Introduction

This manual presents the MkIV way of dealing with xml. Although the traditional MkII

streaming parser has a charming simplicity in its control, for complex documents the tree

based MkIV method is more convenient. We expect that the old method will be used less

and less and eventually it might become a module in MkIV.

The user interface is sort of experimental but most commands discussed here are in use

already in styles that we make and therefore these commands will stay. Over time we

will add more examples to this document.

If you are familiar with xml processing in MkII, then you will have noticed that the MkII

commands have XML in their name. The MkIV commands have a lowercase xml in their

names. That way there is no danger for a mixup.

You may wonder why we do these manipulations in TEX and not use xslt instead. The

advantage of an integrated approach is that it simplies usage. Think of not only process-

ing the a document, but also using xml for managing resources in the same run. An xslt

approach is just as verbose (after all, you still need to produce TEX code) and probably

less readable. In the case of MkIV the integrated approach is is also faster and gives us

the option to manipulate content at runtime using Lua.

This manual is dedicated to Taco Hoekwater, one of the rst ConTEXt users, and also the

rst to use it for processing xml. Who could have thought at that time that we would

have a more convenient way of dealing with those angle brackets.

Hans Hagen, Pragma ADE, August 2008

This mechanism described here is still somewhat experimental and will be cleaned up and
improved. In the case of resolved bugs you might need to upgrade your styles accordingly.

6 6

6 6

Introduction

4

7 7

7 7

5

1 Setting up a converter

1.1 from structure to setup

We use a very simple document structure for demonstrating how a converter is dened.

In practice a mapping will be more complex, especially when we have a style with non

standard titles and formatting.

<?xml version='1.0' standalone='yes?>

<document>
<section>

<title>Some title</title>
<content>
<p>a paragraph of text</p>
<p>another paragraph of text</p>

</content>
</section>

</document>

Say that this document is stored in the le demo.xml, then the following code can be used

as starting point:

\startxmlsetups xml:demo:base
\xmlsetsetup{demo}{*}{-}
\xmlsetsetup{demo}{document|section|p}{xml:demo:*}

\stopxmlsetups

\xmlregisterdocumentsetup{demo}{xml:demo:base}

\startxmlsetups xml:demo:document
\title{Contents}
\placelist[chapter]
\page
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:demo:section
\chapter{\xmlfirst{#1}{/title}}
\xmlfirst{#1}{/content}

\stopxmlsetups

8 8

8 8

Setting up a converter

6

\startxmlsetups xml:demo:p
\xmlflush{#1}\endgraf

\stopxmlsetups

\xmlprocessfile{demo}{demo.xml}{}

Watch out! These are not just setups, but specic xml setups which get an argument

passed (the #1). If for some reason your xml processing fails, it might be that you mistak-

enly have used a normal setup denition. The argument #1 represents the current node

(element) and is unique.

For the moment stop wondering what some (empty) arguments are doing here. Contrary

to the style denitions this interface looks rather low level (with no optional arguments)

and the main reason for this is that we want processing to be fast. So, the basic framework

is:

\startxmlsetups xml:demo:base
% associate setups with elements

\stopxmlsetups

\xmlregisterdocumentsetup{demo}{xml:demo:base}

% define setups for matches

\xmlprocessfile{demo}{demo.xml}{}

In this example we mostly just ush the content of an element and in the case of a section

we ush explicit child elements. The #1 in the example code represents the current

element. The line:

\xmlsetsetup{demo}{*}{-}

sets the default for each element to ‘just ignore it’. A + would make the default to always

ush the content. This means that at this point we only handle:

<section>
<title>Some title</title>
<content>

<p>a paragraph of text</p>
</content>

</section>

9 9

9 9

Setting up a converter

7

In the next section we will deal with the slightly more comples itemize and gure place-

ment.

1.2 alternative solutions

Dealing with an itemize is rather simple (as long as we forget about attributes that control

the behaviour):

<itemize>
<item>first</item>
<item>second</item>

</itemize>

First we need to add itemize to the setup assignment:

\xmlsetsetup{demo}{document|section|p|itemize}{xml:demo:*}

The setup can look like:

\startxmlsetups xml:demo:itemize
\startitemize

\xmlfilter{#1}{/item/command(xml:demo:itemize:item)}
\stopitemize

\stopxmlsetups

\startxmlsetups xml:demo:itemize:item
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

An alternative is to map item directly:

\xmlsetsetup{demo}{document|section|p|itemize|item}{xml:demo:*}

and use:

\startxmlsetups xml:demo:itemize
\startitemize

\xmlflush{#1}
\stopitemize

\stopxmlsetups

\startxmlsetups xml:demo:item
\startitem

10 10

10 10

Setting up a converter

8

\xmlflush{#1}
\stopitem

\stopxmlsetups

Sometimes a more local solution makes sense, especially when the item tag is used for

other purposes as well.

This leaves us with dealing with the resources, like gures.

<resource type='figure'>
<caption>A picture of a cow.</caption>
<content><external file="cow.pdf"/></content>

</resource>

Here we can use a more restricted match:

\xmlsetsetup{demo}{resource[@type='figure']}{xml:demo:figure}
\xmlsetsetup{demo}{external}{xml:demo:*}

and the denitions:

\startxmlsetups xml:demo:figure
\placefigure

{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

\startxmlsetups xml:demo:external
\externalfigure[\xmlatt{#1}{file}]

\stopxmlsetups

At this point it is good to notice that \xmlatt{#1}{file} is passed as it is, a macro call.

This means that when a macro like \externalfigure uses the rst argument frequently

without rst storing its value, the lookup is done several times. A solution for this is:

\startxmlsetups xml:demo:external
\expanded{\externalfigure[\xmlatt{#1}{file}]}

\stopxmlsetups

Because the lookup is rather fast, normally there is no need to bother about this too much.

An alternative denition for placement is the following:

\xmlsetsetup{demo}{resource}{xml:demo:resource}

with:

11 11

11 11

Setting up a converter

9

\startxmlsetups xml:demo:resource
\placefloat

[\xmlatt{#1}{type}]
{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

This way you can specify table as type too. Because you can dene your own oat

types, more complex variants are also possible. In that case it makes sense to provide

some default behaviour too:

\definefloat[figure-here][figures-here][figure]
\definefloat[figure-left][figures-left][figure]
\definefloat[table-here] [tables-here] [table]
\definefloat[table-left] [tables-left] [table]

\setupfloat[figure-here][default=here]
\setupfloat[figure-left][default=left]
\setupfloat[table-here] [default=here]
\setupfloat[table-left] [default=left]

\startxmlsetups xml:demo:resource
\placefloat

[\xmlattdef{#1}{type}{figure}-\xmlattdef{#1}{location}{here}]
{\xmlfirst{#1}{/caption}}
{\xmlfirst{#1}{/content}}

\stopxmlsetups

In this example we support two types and two locations. We default to a gure placed

(when possible) at the current location.

12 12

12 12

Setting up a converter

10

13 13

13 13

11

2 Filtering content

2.1 TEX versus Lua

It will not come as a surprise that we can access xml les from TEX as well as from Lua.

In fact there are two methods to deal with xml in Lua. First there are the low level xml

functions in the xml namespace. On top of those functions there is a set of functions in

the lxml namespace that deals with xml in a more TEXie way. Most of these have similar

commands at the TEX end.

\startxmlsetups first:demo:one
\xmlsetsetup {demo} {*} {-}
\xmlfilter {demo} {artist/name[text()='Randy Newman']/..

/albums/album[position()=3]/command(first:demo:two)}
\stopxmlsetups

\startxmlsetups first:demo:two
\blank \start \tt

\xmldisplayverbatim{#1}
\stop \blank

\stopxmlsetups

\xmlregistersetup{first:demo:one}

\xmlprocessfile{demo}{music-collection.xml}{}

This gives the following snippet of verbatim xml code. The indentation is conform the

indentation in the whole xml le.1

<name>Land Of Dreams</name>
<tracks>
<track length="248">Dixie Flyer</track>
<track length="212">New Orleans Wins The War</track>
<track length="218">Four Eyes</track>
<track length="181">Falling In Love</track>
<track length="187">Something Special</track>
<track length="168">Bad News From Home</track>
<track length="207">Roll With The Punches</track>
<track length="209">Masterman And Baby J</track>
<track length="134">Follow The Flag</track>
<track length="246">I Want You To Hurt Like I Do</track>

1
The xml le contains the collection stores on my slimserver instance.

14 14

14 14

Filtering content

12

<track length="248">It's Money That Matters</track>
<track length="156">Red Bandana</track>
</tracks>

An alternative written in Lua looks as follows:

\blank \start \tt \startluacode
local m = lxml.load("mine","music-collection.xml") -- m == lxml.id("mine")
local p = "artist/name[text()='Randy Newman']/../albums/album[position()=4]"
local l = lxml.filter(m,p) -- returns a list (with one entry)
lxml.displayverbatim(l[1])

\stopluacode \stop \blank

This produces:

<name>Bad Love</name>
<tracks>
<track length="340">My Country</track>
<track length="295">Shame</track>
<track length="205">I'm Dead (But I Don't Know It)</track>
<track length="213">Every Time It Rains</track>
<track length="206">The Great Nations of Europe</track>
<track length="220">The One You Love</track>
<track length="164">The World Isn't Fair</track>
<track length="264">Big Hat, No Cattle</track>
<track length="243">Better Off Dead</track>
<track length="236">I Miss You</track>
<track length="126">Going Home</track>
<track length="180">I Want Everyone To Like Me</track>
</tracks>

You can use both methods mixed but in practice we will use the TEX commands in regular

styles and the mixture in modules, for instance in those dealing with MathML and cals

tables.

2.2 a few details

In ConTEXt setups are a rather common variant on macros. An example of a setup is:

\startsetup doc:print
\setuppapersize[A4][A4]

\stopsetup

\startsetup doc:screen

15 15

15 15

Filtering content

13

\setuppapersize[S6][S4]
\stopsetup

Later on we can say something like:

\doifmodeelse {paper} {
\setup[doc:print]

} {
\setup[doc:screen]

}

Another example is:

\startsetup[doc:header]
\marking[chapter]
\space
--
\space
\pagenumber

\stopsetup

in combination with:

\setupheadertexts[\setup{doc:header}]

Here the advantage is that instead of ending up with an unreadable header denitions,

we use a nicely formatted setup. A nice feature of a setup is that spaces are ignored so

you don't need to worry about spurious spaces.

The only difference between setups and xml setups is that the later ones get an argument

(#1) that reects the current node in the xml tree.

16 16

16 16

Filtering content

14

17 17

17 17

15

3 Commands

3.1 nodes and lpaths

The amount of commands available for manipulating the xml le is rather large. Many

of the commands cooperate with so called setups, a fancy name for a collection of macro

calls either or not mixed with text.

Most of the commands are just shortcuts to Lua calls, which means that the real work is

done by Lua. In fact, what happens is that we have a continuous transfer of control from

TEX to Lua, where Lua prints back either data (like element content or attribute values)

or just invokes a setup whereby it passes a reference to the node resolved conform the

path expression. The invoked setup itself might return control to Lua again, etc.

This sounds complicated but examples will show what we mean here. First we present

the whole repertoire of commands. Because users can read the source code, they might

uncover more commands, but only the ones discussed here are ofcial. The commands

are grouped in categories.

In the following sections node means a reference to a node: a document id (string) or an

argument to a setup (result from a lookup). A lpath is a fancy name for a path expression

(as with xslt) but resolved by Lua. A filter is an action that is applied to the result of a

lookup.

3.2 loading

\xmlload {id} {filename} loads the le filename and registers it under id

\xmlloadbuffer {id} {buffer} loads the buffer buffer and registers it under id

\xmlloaddata {id} {string} loads string and registers it under id

\xmlinclude {node} {lpath} {attribute} includes the le specied by attribute of

the element located by lpath at node node

\xmlprocessfile {id} {filename} {initial-xml-setup} registers le filename as id
and process the tree starting with initial-xml-setup

\xmlprocessbuffer {id} {buffer} {initial-xml-setup} registers buffer buffer as id
and process the tree starting with initial-xml-setup

\xmlprocessdata {id} {string} {initial-xml-setup} registers string as id and

process the tree starting with initial-xml-setup

18 18

18 18

Commands

16

The initial setup defaults to xml:process that is dened as follows:

\startsetups xml:process
\xmlregistereddocumentsetups\xmldocument
\xmlmain\xmldocument

\stopsetups

First we apply the setups associated with the document (including common setups) and

then we ush the whole document. The macro \xmldocument expands to the current

document id. There is also \xmlself which expands to the current node number (#1 in

setups).

\xmlmain {id} returns the whole documents

Normally such a ush will trigger a chain reaction of setups associated with the child

elements.

3.3 ushing data

When we ush an element, the associated xml setups are expanded. The most straight-

forward way to ush an element is the following. Keep in mind that the returned valus

itself can trigger setups and therefore ushes.

\xmlflush {node} returns all nodes under node

You can restrict ushing by using commands that accept a specication.

\xmltext {node} {lpath} returns the text of the matching lpath under node

\xmlall {node} {lpath} returns all nodes under node that matches lpath

\xmlfirst {node} {lpath} returns the rst node under node that matches lpath

\xmllast {node} {lpath} returns the last node under node that matches lpath

\xmlfilter {node} {lpath/filter} at a match of lpath a lter filter is applied and

the result is returned

\xmlsnippet {node} {n} returns the nth element under node

\xmlindex {node} {lpath} {n} returns the nth match of lpath at node node; a negative

number starts at the end

\xmlconcat {node} {lpath} {text} returns the sequence of nodes that match lpath at

node whereby text is put between each match

19 19

19 19

Commands

17

\xmlconcatrange {node} {lpath} {text} {n} {m} returns the nth upto mth of nodes

that match lpath at node whereby text is put between each match

\xmlcommand {node} {lpath} {xml-setup-id} apply the given setup to each match of

lpath at node node

\xmlstrip {node} {lpath} remove leading and trailing spaces from nodes under node
that match lpath

\xmlstripped {node} {lpath} remove leading and trailing spaces from nodes under

node that match lpath and return the content afterwards

\xmlstripnolines {node} {lpath} remove leading and trailing spaces as well as col-

lapse embedded spaces from nodes under node that match lpath

\xmlstrippednolines {node} {lpath} remove leading and trailing spaces as well as

collapse embedded spaces from nodes under node that match lpath and return the con-

tent afterwards

\xmlinlineverbatim {node} {lpath} return the content of the lpath match as inline

verbatim code, that is no further interpretation (expansion) takes place and spaces are

honoured

\xmldisplayverbatim {node} {lpath} return the content of the lpath match as display

verbatim code, that is no further interpretation (expansion) takes place and leading and

trailing spaces and newlines are treated special

3.4 information

The following commands return strings. Normally these are used in tests.

\xmlname {node} returns the complete name (including namespace prex) of the given

node

\xmlnamespace {node} returns the namespace of the given node

\xmltag {node} returns the tag of the element, without namespace prex

\xmltags {node} {lpath} returns a comma-separated list of tags of elements that match

the lpath

\xmlcount {node} {lpath} returns the number of matches of lpath at node node

\xmlnofelements {node} returns the number of elements at node node

\xmlatt {node} {name} returns the value of attribute name or empty if no such attribute

exists

20 20

20 20

Commands

18

\xmlattdef {node} {name} {default} returns the value of attribute name or default if

no such attribute exists

\xmlattribute {node} {lpath} {name} nds a rst match for lpath at node and returns

the value of attribute name or empty if no such attribute exists

\xmlattributedef {node} {lpath} {name} {default} nds a rst match for lpath at

node and returns the value of attribute name or default if no such attribute exists

3.5 manipulation

You can use Lua code to manipulate the tree and it makes no sense to duplicate this in

TEX. In the future we might provide an interface to some of this functionality. Keep in

mind that manipuating the tree might have side effects as we maintain several indices

into the tree that also needs to be updated then.

3.6 integration

If you write a module that deals with xml, for instance processing cals tables, then you

need ways to control specic behaviour. For instance, you might want to add a back-

ground to the table. Such directives are collected in xml les and can be loaded on

demand.

\xmlloaddirectives {filename} loads ConTEXt directives from filename that will get

interpreted when processing documents

A directives denition le looks as follows:

<?xml version="1.0" standalone="yes"?>

<directives>
<directive attribute='id' value="100"

setup="cdx:100"/>
<directive attribute='id' value="101"

setup="cdx:101"/>
<directive attribute='cdx' value="colors" element="cals:table"

setup="cdx:cals:table:colors"/>
<directive attribute='cdx' value="vertical" element="cals:table"

setup="cdx:cals:table:vertical"/>
<directive attribute='cdx' value="noframe" element="cals:table"

setup="cdx:cals:table:noframe"/>
<directive attribute='cdx' value="*" element="cals:table"

setup="cdx:cals:table:*"/>
</directives>

21 21

21 21

Commands

19

Examples of usage can be found in x-cals.mkiv. The directive is triggered by an attribute.

Instead of setup you can specify before and after.

\xmldirectives {node} {lpath} apply the setups directive associated with the found

nodes

\xmldirectivesbefore {node} {lpath} apply the before directives associated with the

found nodes

\xmldirectivesafter {node} {lpath} apply the after directives associated with the

found nodes

Normally a directive will be put in the xml le, for instance as:

<?context-mathml-directive minus reduction yes ?>

Here the mathml is the general class of directives and minus a subclass, in our case a

specic element. You can also invoke such directives directly:

\xmlcontextdirective {kind} {class} {key} {value} execute the directive associ-

ated with kind and pass three arguments to it

This assumes that there is a command xmlkinddirective or in the MathML example

xmlmathmldirective that does something useful.

3.7 setups

The basic building blocks of xml processing are setups. These are just collections of

macros that are expanded. These setups get one argument passed (#1):

\startxmlsetups somedoc:somesetup
\xmlflush{#1}

\stopxmlsetups

This argument is normally a number that internally refers to a specic node in the xml

tree. The user should see it as an abstract entity and not depend on it being a number. Just

think of it as ‘the current node’. You can (and probably will) call such setups directly:

\xmlsetup {name} {node} expands setup name and pass node as argument

However, in most cases the setups are associated to specic elements, something that

users of xslt might recognize as templates.

\xmlsetfunction {name} {lpath} {function} associates function Lua function to the

elements in namespace name that match lpath

22 22

22 22

Commands

20

\xmlsetsetup {name} {lpath} {setup} associates setups (TEX code) setup to the ele-

ments in namespace name that match lpath

\xmlprependsetup {setup} pushes setup to the front of global list of setups to be ap-

plied

\xmlappendsetup {setup} pushes setup to the end of global list of setups to be applied

\xmlbeforesetup {setup} {position} inserts setup before setup position in the global

list of setups to be applied

\xmlaftersetup {setup} {position} inserts setup after setup position in the global

list of setups to be applied

\xmlremovesetup {setup} removes setup from the global list of setups to be applied

\xmlprependdocumentsetup {id} {setup} pushes setup to the front of id specic list

of setups to be applied

\xmlappenddocumentsetup {id} {setup} pushes setup to the end of id specic list of

setups to be applied

\xmlbeforedocumentsetup {id} {setup} {position} inserts setup before setup posi-
tion in the id specic list of setups to be applied

\xmlafterdocumentsetup {id} {setup} {position} inserts setup after setup position
in the id specic list of setups to be applied

\xmlremovedocumentsetup {setup} removes setup from the id specic list of setups to

be applied

\xmlresetdocumentsetups {id} removes all setups from the id specic list of setups to

be applied

\xmlflushdocumentsetups {id} applies all setups in tagged with id

\xmlregisteredsetups applies all global setups to the current document

\xmlregistereddocumentsetups applies all document specic setups to the current doc-

ument

3.8 testing

The following test macros all take a node as rst argument and an lpath as second:

\xmldoif {node} {lpath} {yes} expands to yes when lpath matches at node node

23 23

23 23

Commands

21

\xmldoifnot {node} {lpath} {no} expands to no when lpath does not match at node

node

\xmldoifelse {node} {lpath} {yes} {no} expands to yes when lpath matches at

node node and to no otherwise

\xmldoiftext {node} {lpath} {yes} expands to yes when the node matching lpath
at node node has some content

\xmldoifnottext {node} {lpath} {no} expands to do-if-fase when the node match-

ing lpath at node node has no content

\xmldoifelsetext {node} {lpath} {yes} {no} expands to yes when the node match-

ing lpath at node node has content and to no otherwise

\xmldoifelseempty {node} {lpath} {yes} {no} expands to yeswhen the node match-

ing lpath at node node is empty and to no otherwise

\xmldoifelseselfempty {node} {lpath} {yes} {no} expands to yes when the node

matching lpath at node node is empty and to no otherwise

3.9 initialization

The general setup command (not to be confused with setups) that deals with the MkIV

tree handler is \setupxml. There are currently only a few options.

When you set default to text elements with no setup assigned will end up as text. When

set to hidden such elements will be hidden.

You can set compress to yes in which case comment is stripped from the tree when the

le is read. When entities is set to yes (this is the default) entities are replaced.

\xmlregisterns {internal} {public} associates an internal namespace (like mml) with

one given in the document as url (like mathml)

\xmlremapname {node} {lpath} {new-namespace} {new-tag} changes the namespace

and tag of the matching elements

\xmlremapnamespace {node} {lpath} {from} {to} replaces all references to the given

namespace to a new one

24 24

24 24

Commands

22

\xmlchecknamespace {id} {lpath} {new} sets the namespace of the matching elements

unless a namespace is already set

3.10 helpers

Often an attribute will determine the rendering and this may result in many tests. Espe-

cially when we have multiple attributes that control the output such tests can become

rather extensive and redundant because one gets n×m or more such tests.

Therefore we have a convenient way to map attributes onto for instance strings or com-

mands.

\xmlmapvalue {category} {name} {value} associate a value with a category and name

\xmlvalue {category} {name} {default} expand the value value associated with a cat-
egory and name and if not resolved, expand default

This is used as follows. We dene a couple of mappings in the same category:

\xmlmapvalue{emph}{bold} {\bf}
\xmlmapvalue{emph}{italic}{\it}

Assuming that we have associated the following setup with the emph element, we can say

(with #1 being the current element):

\startxmlsetups demo:emph
\begingroup

\xmlvalue{emph}{\xmlatt{#1}{type}}{}
\endgroup

\stopxmlsetups

In this case we have no default. The type attribute triggers the actions, as in:

normal <emph type='bold'>bold</emph> normal

This mechanism is not really bound to elements and attributes so you can use this mech-

anism for other purposes as well.

3.11 synonyms

A few of the discussed commands have synonyms

\xmlmapval \xmlmapvalue
\xmlval \xmlvalue
\xmlregistersetup \xmlappendsetup
\xmlregisterdocumentsetup \xmlappenddocumentsetup

25 25

25 25

23

4 Expressions and lters

4.1 path expressions

In the previous chapters we used lpath expressions, which are a variant on xpath ex-

pressions as in xslt but in this case more geared towards usage in TEX. This mechanisms

will be extended when demands are there.

A path is a sequence of matches. A simple path expression is:

a/b/c/d

Here each / goes one level deeper. We can go backwards in a lookup with ..:

a/b/../d

We can also combine lookups, as in:

a/(b|c)/d

A negated lookup is preceded by a !:

a/(b|c)/!d

A wildcard is specied with a *:

a/(b|c)/!d/e/*/f

In addition to these tag based lookups we can use attributes:

a/(b|c)/!d/e/*/f[@type=whatever]

An @ as rst character means that we are dealing with an attribute. Within the square

brackets there can be boolean expressions:

a/(b|c)/!d/e/*/f[@type=whatever and @id>100]

You can use functions as in:

a/(b|c)/!d/e/*/f[something(text()) == "oeps"]

There are a couple of predened functions:

rootposition number the index of the matched root element (kind of special)

position number the current index of the matched element in the match list

26 26

26 26

Expressions and lters

24

match number the current index of the matched element sub list with the same

parent

index number the current index of the matched element in its parent list

text string the textual representation of the matched element

name string the full name of the matched element: namespace and tag

ns string the namespace of the matched element

tag string the tag of the matched element

attribute string the value of the attribute with the given name of the matched

element

There are fundamental differences between position, match and index. Each step results

in a new list of matches. The position is the index in this new (possibly intermediate)

list. The match is also an index in this list but related to the specic match of element

names. The index refers to the location in the parent element.

Say that we have:

<collection>
<resources>

<manual>
<screen>.1.</screen>
<paper>.1.</paper>

</manual>
<manual>
<paper>.2.</paper>
<screen>.2.</screen>

</manual>
<resources>
<resources>

<manual>
<screen>.3.</screen>
<paper>.3.</paper>

</manual>
<resources>

<collection>

The following then applies:

collection/resources/manual[position()==1]/paper .1.
collection/resources/manual[match()==1]/paper .1. .3.
collection/resources/manual/paper[index()==1] .2.

In most cases the position test is more restrictive than the match test.

27 27

27 27

Expressions and lters

25

You can pass your own functions too. Such functions are dened in the the xml.expres-
sions namespace. We have dened a few shortcuts:

xml.expressions.contains = string.find
xml.expressions.find = string.find
xml.expressions.upper = string.upper
xml.expressions.lower = string.lower
xml.expressions.number = tonumber
xml.expressions.boolean = toboolean -- mkiv specific

You can also use normal Lua functions as long as you make sure that you pass the right

arguments. There are a few predened variables available inside such functions.

list table the list of matches

l number the current index in the list of matches

ll element the current element that matched

order number the position of the root of the path

The given expression between [] is converted to a Lua expression so you can use the

usual ingredients:

== ~= <= >= < > not and or ()

In addition, = equals == and != is the same as ~=. If you mess up the expression, you quite

likely get a Lua error message.

4.2 functions as lters

At the Lua end a whole lpath expression results in a (set of) node(s) with its environment,

but that is hardly usable in TEX. Think of code like:

for e in xml.collected(xml.load('text.xml'),"title") do
-- e = the element that matched

end

The older variant is still supported but you can best use the previous variant.

for r, d, k in xml.elements(xml.load('text.xml'),"title") do
-- r = root of the title element
-- d = data table
-- k = index in data table

end

Here d[k] points to the title element and in this case all titles in the tree pass by. In

practice this kind of code is encapsulated in function calls, like those returning elements

28 28

28 28

Expressions and lters

26

one by one, or returning the rst or last match. The result is then fed back into TEX,

possibly after being altered by an associated setup. We've seen the wrappers to such

functions already in a previous chapter.

In addition to the previously discussed expressions, one can add so called lters to the

expression, for instance:

a/(b|c)/!d/e/text()

In a lter, the last part of the lpath expression is a function call. The previous example

returns the text of each element e that results from matching the expression. Examples

of functions are:

text string returns the content

name string returns the (either or not remapped) namespace

ns string returns gives the original namespace

tag string returns the elements name

count number returns the elements name

Not all such functions make sense in TEX, for instance because they return a data structure

that is useless for TEX itself. Instead of using functions like first(), you can as well use

the somewhat less efcient \xmlfirst and friends.

attribute(name) returns the attribute with the given name

command(name) expands the setup with the given name for each found element

position(n) processes the nth instance of the found element

first() processes the rst instance of the found element

last() processes the last instance of the found element

These lters are in fact Lua functions which means that if needed more of them can be

added. Indeed this happens in some of the xml related MkIV modules, for instance in

the MathML processor.

4.3 example

The number of commands is rather large and if you want to avoid them this is often

possible. Take for instance:

\xmlall{#1}{/a/b[position()>3]}

Alternatively you can use:

\xmlfilter{#1}{/a/b[position()>3]/all()}

and actually this is also faster as internally it avoids a function call. Of course in practice

this is hardly measurable.

29 29

29 29

Expressions and lters

27

In previous examples we've already seen quite some expressions, and it might be good

to point out that the syntax is modelled after xslt but is not quite the same. The reason is

that we started with a rather minimal system and have already styles in use that depend

on compatibility.

namespace:// axis node(set) [expr 1]..[expr n] / ... / filter

When we are inside a ConTEXt run, the namespace is tex. Hoewever, if you want not to

print back to TEX you need to be more explicit. Say that we typeset examns and have a

(not that logical) structure like:

<question>
<text>...</text>
<answer>

<item>one</item>
<item>two</item>
<item>three</item>

</answer>
<alternative>

<condition>true</condition>
<score>1</score>

</alternative>
<alternative>

<condition>false</condition>
<score>0</score>

</alternative>
<alternative>

<condition>true</condition>
<score>2</score>

</alternative>
</question>

Say that we typeset the questions with:

\startxmlsetups question
\blank
score: \xmlfunction{#1}{totalscore}
\blank
\xmlfirst{#1}{text}
\startitemize

\xmlfilter{#1}{/answer/item/command(answer:item)}
\stopitemize
\endgraf

30 30

30 30

Expressions and lters

28

\blank
\stopxmlsetups

Each item in the answer results in a call to:

\startxmlsetups answer:item
\startitem

\xmlflush{#1}
\endgraf
\xmlfilter{#1}{../../alternative[position()=rootposition()]/
condition/command(answer:condition)}

\stopitem
\stopxmlsetups

\startxmlsetups answer:condition
\endgraf
condition: \xmlflush{#1}
\endgraf

\stopxmlsetups

Now, there are two rather special lters here. The rst one involves calculating the total

score. As we look forward we use a function to deal with this.

\startluacode
function xml.functions.totalscore(root)
local score = 0
for e in xml.collected(root,"/alternative") do

score = score + xml.filter(e,"xml:///score/number()") or 0
end
tex.write(score)

end
\stopluacode

Watch how we use the namespace to keep the results at the Lua end.

The second special trick shown here is to limit a match using the current position of the

root (#) match.

As you can see, a path expression can be more than just ltering a few nodes. At the end

of this manual you will nd a bunch of examples.

4.4 tables

If you want to know how the internal xml tables look you can print such a table:

31 31

31 31

Expressions and lters

29

print(table.serialize(e))

This produces for instance:

t={
["at"]={
["label"]="whatever",
},
["dt"]={ "some text" },
["ns"]="",
["rn"]="",
["tg"]="demo",

}

The rn entry is the renamed namespace (when renaming is applied). If you see tags like

@pi@ this means that we don't have an element, but (in this case) a processing instruction.

@rt@ the root element

@dd@ document denition

@cm@ comment, like <!-- whatever -->
@cd@ so called CDATA
@pi@ processing instruction, like <?whatever we want ?>

There are many ways to deal with the content, but in the perspective of TEX only a few

matter.

xml.sprint(e) print the content to TEX and apply setups if needed

xml.tprint(e) print the content to TEX (serialize elements verbose)

xml.cprint(e) print the content to TEX (used for special content)

Keep in mind that anything low level that you uncover is not part of the ofcial interface

unless mentioned in this manual.

32 32

32 32

Expressions and lters

30

33 33

33 33

31

5 Tracing

It can be hard to debug code as much happens kind of behind the screens. Therefore

we have a couple of tracing options. Of course you can typeset some status information,

using for instance:

\xmlshow{#1}
\xmlname{#1}

We also have a bunch of trackers that can be enabled, like:

\enabletrackers[xml.show,xml.parse]

The full list (currently) is:

xml.entities show what entities are seen and replaced

xml.path show the result of parsing an lpath expression

xml.parse show stepwise resolving of expressions

xml.profile report all parsed lpath expressions (in the log)

xml.profile report all parsed lpath expressions (in the log)

xml.profile report all parsed lpath expressions (in the log)

xml.profile report all parsed lpath expressions (in the log)

xml.profile report all parsed lpath expressions (in the log)

xml.profile report all parsed lpath expressions (in the log)

xml.remap show what namespaces are remapped

lxml.access report errors with respect to resolving (symbolic) nodes

lxml.comments show the comments that are encountered (if at all)

lxml.loading show what les are loaded and converted

lxml.setups show what setups are being associated to elements

34 34

34 34

Tracing

32

35 35

35 35

33

6 Expansion

For novice users the concept of expansion might sound frightening and to some extend

it is. However, it is important enough to spend some words on it here.

Imagine that we have an xml le that looks as follows:

<?xml version='1.0' ?>
<demo>

<chapter>
<title>Some short title</title>
<content>

zeta
<index>

<key>zeta</key>
<content>zeta again</content>

</index>
alpha
<index>

<key>alpha</key>
<content>alpha again</content>

</index>
gamma
<index>

<key>gamma</key>
<content>gamma</content>

</index>
beta
<index>

<key>beta</key>
<content>beta</content>

</index>
delta
<index>

<key>delta</key>
<content>delta</content>

</index>
done!

</content>
</chapter>

</demo>

36 36

36 36

Expansion

34

There are a few structure related elements here: a chapter (with its list entry) and some

index entries. Both are multipass related and therefore travel around. This means that

when we let data end up in the auxiliary le, we need to make sure that we end up

with either expanded data (i.e. no references to the xml tree) or with robust forward and

backward references to elements in the tree.

Here we discuss three approaches (and more may show up later): pushing xml into the

auxiliary le and using references to elements either or not with an associated setup. We

control the variants with a switch.

\newcount\TestMode

\TestMode=0 % expansion=xml
\TestMode=1 % expansion=yes, index, setup
\TestMode=2 % expansion=yes

We apply a couple of setups:

\startxmlsetups xml:mysetups
\xmlsetsetup{\xmldocument}{demo|index|content|chapter|title|em}{xml:*}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

The main document is processed with:

\startxmlsetups xml:demo
\xmlflush{#1}
\subject{contents}
\placelist[chapter][criterium=all]
\subject{index}
\placeregister[index][criterium=all]
\page % else buffer is forgotten when placing header

\stopxmlsetups

First we show three alternative ways to deal with the chapter. The rst case expands the

xml reference so that we have an xml stream in the auxiliary le. This stream is processed

as a small independent suble when needed. The second case registers a reference to

the current element (#1). This means that we have access to all data of this element, like

attributes, title and content. What happens depends on the given setup. The third variant

does the same but here the setup is part of the reference.

\startxmlsetups xml:chapter
\ifcase \TestMode

% xml code travels around

37 37

37 37

Expansion

35

\setuphead[chapter][expansion=xml]
\startchapter[title=eh: \xmltext{#1}{title}]

\or
% index is used for access via setup
\setuphead[chapter][expansion=yes,xmlsetup=xml:title:flush]
\startchapter[title=\xmlgetindex{#1}]

\or
% tex call to xml using index is used
\setuphead[chapter][expansion=yes]
\startchapter[title=hm: \xmlreference{#1}{xml:title:flush}]

\fi
\xmlfirst{#1}{content}
\stopchapter

\stopxmlsetups

\startxmlsetups xml:title:flush
\xmltext{#1}{title}

\stopxmlsetups

We need to deal with emphasis and the content of the chapter.

\startxmlsetups xml:em
\begingroup\em\xmlflush{#1}\endgroup

\stopxmlsetups

\startxmlsetups xml:content
\xmlflush{#1}

\stopxmlsetups

A similar approach is followed with the index entries. Watch how we use the numbered

entries variant (in this case we could also have used just entries and keys.

\startxmlsetups xml:index
\ifcase \TestMode

\setupregister[index][expansion=xml,xmlsetup=]
\setstructurepageregister

[index]
[entries:1=\xmlfirst{#1}{content},
keys:1=\xmltext{#1}{key}]

\or
\setupregister[index][expansion=yes,xmlsetup=xml:index:flush]
\setstructurepageregister

[index]
[entries:1=\xmlgetindex{#1},

38 38

38 38

Expansion

36

keys:1=\xmltext{#1}{key}]
\or

\setupregister[index][expansion=yes,xmlsetup=]
\setstructurepageregister

[index]
[entries:1=\xmlreference{#1}{xml:index:flush},
keys:1=\xmltext{#1}{key}]

\fi
\stopxmlsetups

\startxmlsetups xml:index:flush
\xmlfirst{#1}{content}

\stopxmlsetups

Instead of this ush, you can use the predened setup xml:flush unless it is overloaded

by you.

The le is processed by:

\starttext
\xmlprocessfile{main}{test.xml}{}

\stoptext

We don't show the result here. If you're curious what the output is, you can test it yourself.

In that case it also makes sense to peek into the test.tuc le to see how the information

travels around. The metadata elds carry information about how to process the data.

The rst case, the xml expansion one, is somewhat special in the sense that internally we

use small pseudo les. You can control the rendering by tweaking the following setups:

\startxmlsetups xml:ctx:sectionentry
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:ctx:registerentry
\xmlflush{#1}

\stopxmlsetups

When these methods work out okay the other structural elements will be dealt with in a
similar way.

39 39

39 39

37

7 Example paths

There is not that much system in the following examples. They resulted from tests with

different documents. The current implementation evolved out if the experimental code.

For instance, I decided to add the multiple expressions in row handling after a few email

exchanges with Jean-Michel Huffen.

One of the main differences between the way xslt resolves a path and our way is the

anchor. Take:

/something
something

The rst one anchors in the current (!) element so it will only consider direct children.

The second one does a deep lookup and looks at the descendants as well. Furthermore

we have a few extra shortcuts like ** in a/**/b which represents all descendants.

The expressions (between square brackets) has to be valid Lua and some preprocessing

is done to resolve the built in functions. So, you might use code like:

my_lpeg_expression:match(text()) == "whatever"

given that my_lpeg_expression is known. In the examples below we use the visualizer

to show the steps.

pattern: /*

1 axis child

pattern: /**

1 axis descendant

pattern: answer

1 axis auto-descendant-or-self
2 nodes *:answer

pattern: answer/test/*

1 axis auto-descendant-or-self
2 nodes *:answer

40 40

40 40

Example paths

38

3 axis auto-child
4 nodes *:test
5 axis child

pattern: answer/test/child::

1 axis auto-descendant-or-self
2 nodes *:answer
3 axis auto-child
4 nodes *:test
5 axis child

pattern: answer/*

1 axis auto-descendant-or-self
2 nodes *:answer
3 axis child

pattern: answer/*[tag()='p' and position()=1 and text()!='']

1 axis auto-descendant-or-self
2 nodes *:answer
3 axis child
4 expression tag()='p' and position()=1 and text()!=''

41 41

41 41

Example paths

39

pattern: **

1 axis descendant

pattern: *

1 axis child

pattern: ..

1 axis parent

pattern: .

1 axis self

pattern: //

1 axis descendant-or-self

pattern: /

pattern: **/

1 axis descendant

pattern: **/*

1 axis descendant
2 axis child

pattern: **/.

1 axis descendant
2 axis self

pattern: **//

1 axis descendant
2 axis descendant-or-self

42 42

42 42

Example paths

40

pattern: */

1 axis child

pattern: */*

1 axis child
2 axis child

pattern: */.

1 axis child
2 axis self

pattern: *//

1 axis child
2 axis descendant-or-self

pattern: /**/

1 axis descendant

pattern: /**/*

1 axis descendant
2 axis child

pattern: /**/.

1 axis descendant
2 axis self

pattern: /**//

1 axis descendant
2 axis descendant-or-self

43 43

43 43

Example paths

41

pattern: /*/

1 axis child

pattern: /*/*

1 axis child
2 axis child

pattern: /*/.

1 axis child
2 axis self

pattern: /*//

1 axis child
2 axis descendant-or-self

pattern: ./

1 axis self

pattern: ./*

1 axis self
2 axis child

pattern: ./.

1 axis self
2 axis self

pattern: .//

1 axis self
2 axis descendant-or-self

44 44

44 44

Example paths

42

pattern: ../

1 axis parent

pattern: ../*

1 axis parent
2 axis child

pattern: ../.

1 axis parent
2 axis self

pattern: ..//

1 axis parent
2 axis descendant-or-self

pattern: one//two

1 axis auto-descendant-or-self
2 nodes *:one
3 axis descendant-or-self
4 nodes *:two

pattern: one/*/two

1 axis auto-descendant-or-self
2 nodes *:one
3 axis child
4 axis auto-child
5 nodes *:two

pattern: one/**/two

1 axis auto-descendant-or-self
2 nodes *:one
3 axis descendant
4 axis auto-child
5 nodes *:two

45 45

45 45

Example paths

43

pattern: one/***/two

1 axis auto-descendant-or-self
2 nodes *:one
3 axis descendant-or-self
4 nodes *:two

pattern: one/x//two

1 axis auto-descendant-or-self
2 nodes *:one
3 axis auto-child
4 nodes *:x
5 axis descendant-or-self
6 nodes *:two

pattern: one//x/two

1 axis auto-descendant-or-self
2 nodes *:one
3 axis descendant-or-self
4 nodes *:x
5 axis auto-child
6 nodes *:two

pattern: //x/two

1 axis descendant-or-self
2 nodes *:x
3 axis auto-child
4 nodes *:two

pattern: descendant::whocares/ancestor::whoknows

1 axis descendant
2 nodes *:whocares
3 axis ancestor
4 nodes *:whoknows

pattern: descendant::whocares/ancestor::whoknows/parent::

1 axis descendant
2 nodes *:whocares

46 46

46 46

Example paths

44

3 axis ancestor
4 nodes *:whoknows
5 axis parent

pattern: descendant::whocares/ancestor::

1 axis descendant
2 nodes *:whocares
3 axis ancestor

pattern: child::something/child::whatever/child::whocares

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares

pattern: child::something/child::whatever/child::whocares|whoknows

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares|*:whoknows

pattern: child::something/child::whatever/child::(whocares|whoknows)

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares|*:whoknows

pattern: child::something/child::whatever/child::!(whocares|whoknows)

1 axis child
2 nodes *:something
3 axis child

47 47

47 47

Example paths

45

4 nodes *:whatever
5 axis child
6 nodes not(*:whocares|*:whoknows)

pattern: child::something/child::whatever/child::(whocares)

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares

pattern: child::something/child::whatever/child::(whocares)[position()>2]

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis child
6 nodes *:whocares
7 expression position()>2

pattern: child::something/child::whatever[position()>2][position()=1]

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 expression position()>2
6 expression position()=1

pattern: child::something/child::whatever[whocares][whocaresnot]

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 expression whocares
6 expression whocaresnot

48 48

48 48

Example paths

46

pattern: child::something/child::whatever[whocares][not(whocaresnot)]

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 expression whocares
6 expression not(whocaresnot)

pattern: child::something/child::whatever/self::whatever

1 axis child
2 nodes *:something
3 axis child
4 nodes *:whatever
5 axis self
6 nodes *:whatever

pattern: /something/whatever

1 axis auto-child
2 nodes *:something
3 axis auto-child
4 nodes *:whatever

pattern: something/whatever

1 axis auto-descendant-or-self
2 nodes *:something
3 axis auto-child
4 nodes *:whatever

pattern: /**/whocares

1 axis descendant
2 axis auto-child
3 nodes *:whocares

pattern: whoknows/whocares

1 axis auto-descendant-or-self
2 nodes *:whoknows

49 49

49 49

Example paths

47

3 axis auto-child
4 nodes *:whocares

pattern: whoknows

1 axis auto-descendant-or-self
2 nodes *:whoknows

pattern: whocares[contains(text(),'f') or contains(text(),'g')]

1 axis auto-descendant-or-self
2 nodes *:whocares
3 expression contains(text(),'f') or contains(text(),'g')

pattern: whocares/first()

1 axis auto-descendant-or-self
2 nodes *:whocares
3 finalizer first()

pattern: whocares/last()

1 axis auto-descendant-or-self
2 nodes *:whocares
3 finalizer last()

pattern: whatever/all()

1 axis auto-descendant-or-self
2 nodes *:whatever
3 finalizer all()

pattern: whocares/position(2)

1 axis auto-descendant-or-self
2 nodes *:whocares
3 finalizer position("2")

pattern: whocares/position(-2)

1 axis auto-descendant-or-self
2 nodes *:whocares
3 finalizer position("-2")

50 50

50 50

Example paths

48

pattern: whocares[1]

1 axis auto-descendant-or-self
2 nodes *:whocares
3 expression 1

pattern: whocares[-1]

1 axis auto-descendant-or-self
2 nodes *:whocares
3 expression -1

pattern: whocares[2]

1 axis auto-descendant-or-self
2 nodes *:whocares
3 expression 2

pattern: whocares[-2]

1 axis auto-descendant-or-self
2 nodes *:whocares
3 expression -2

pattern: whatever[3]/attribute(id)

1 axis auto-descendant-or-self
2 nodes *:whatever
3 expression 3
4 finalizer attribute("id")

pattern: whatever[2]/attribute('id')

1 axis auto-descendant-or-self
2 nodes *:whatever
3 expression 2
4 finalizer attribute('id')

pattern: whatever[3]/text()

1 axis auto-descendant-or-self
2 nodes *:whatever

51 51

51 51

Example paths

49

3 expression 3
4 finalizer text()

pattern: /whocares/first()

1 axis auto-child
2 nodes *:whocares
3 finalizer first()

pattern: /whocares/last()

1 axis auto-child
2 nodes *:whocares
3 finalizer last()

pattern: xml://whatever/all()

1 axis auto-descendant-or-self
2 nodes *:whatever
3 finalizer all()

pattern: whatever/all()

1 axis auto-descendant-or-self
2 nodes *:whatever
3 finalizer all()

pattern: //whocares

1 axis descendant-or-self
2 nodes *:whocares

pattern: ..[2]

1 axis parent
2 expression 2

pattern: ../*[2]

1 axis parent
2 axis child
3 expression 2

52 52

52 52

Example paths

50

pattern: /(whocares|whocaresnot)

1 axis auto-child
2 nodes *:whocares|*:whocaresnot

pattern: /!(whocares|whocaresnot)

1 axis auto-child
2 nodes not(*:whocares|*:whocaresnot)

pattern: /!whocares

1 axis auto-child
2 nodes not(*:whocares)

pattern: /interface/command/command(xml:setups:register)

1 axis auto-child
2 nodes *:interface
3 axis auto-child
4 nodes *:command
5 finalizer command("xml:setups:register")

pattern: /interface/command[@name='xxx']/command(xml:setups:typeset)

1 axis auto-child
2 nodes *:interface
3 axis auto-child
4 nodes *:command
5 expression @name='xxx'
6 finalizer command("xml:setups:typeset")

pattern: /arguments/*

1 axis auto-child
2 nodes *:arguments
3 axis child

pattern: /sequence/first()

1 axis auto-child
2 nodes *:sequence
3 finalizer first()

53 53

53 53

Example paths

51

pattern: /arguments/text()

1 axis auto-child
2 nodes *:arguments
3 finalizer text()

pattern: /sequence/variable/first()

1 axis auto-child
2 nodes *:sequence
3 axis auto-child
4 nodes *:variable
5 finalizer first()

pattern: /interface/define[@name='xxx']/first()

1 axis auto-child
2 nodes *:interface
3 axis auto-child
4 nodes *:define
5 expression @name='xxx'
6 finalizer first()

pattern: /parameter/command(xml:setups:parameter:measure)

1 axis auto-child
2 nodes *:parameter
3 finalizer command("xml:setups:parameter:measure")

pattern: /(*:library|figurelibrary)/*:figure/*:label

1 axis auto-child
2 nodes *:library|*:figurelibrary
3 axis auto-child
4 nodes *:figure
5 axis auto-child
6 nodes *:label

pattern: /(*:library|figurelibrary)/figure/*:label

1 axis auto-child
2 nodes *:library|*:figurelibrary

54 54

54 54

Example paths

52

3 axis auto-child
4 nodes *:figure
5 axis auto-child
6 nodes *:label

pattern: /(*:library|figurelibrary)/figure/label

1 axis auto-child
2 nodes *:library|*:figurelibrary
3 axis auto-child
4 nodes *:figure
5 axis auto-child
6 nodes *:label

pattern: /(*:library|figurelibrary)/figure:*/label

1 axis auto-child
2 nodes *:library|*:figurelibrary
3 axis auto-child
4 nodes figure:*
5 axis auto-child
6 nodes *:label

